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Abstract. A method based on sector decomposition has been developed to calculate the double real radia-
tion part of the process e+e−→ 3 jets at next-to-next-to-leading order. It is shown in an example that the
numerical cancellation of soft and collinear poles works well. The method is flexible enough to include an
arbitrary measurement function in the final Monte Carlo program, such that it allows one to obtain differen-
tial distributions for different kinds of observables. This is demonstrated by showing three-, four- and five-jet
rates at order α3s for a subpart of the process.

1 Introduction

Experiments at LEP have shown that the measurement of
jet rates and shape observables in e+e− collisions allow for
very stringent tests of the standard model, in particular
of predictions relying largely on quantum chromodynam-
ics (QCD) [1], allowing for example for a very precise
determination of the strong coupling constant αs. Precise
knowledge of αs in turn is of major importance at hadron
colliders, especially at the LHC. However, the measure-
ments from jets and shapes in e+e− collisions, although
being very precise, have not been included in the world
average value for αs, because it is based only on measure-
ments where next-to-next-to-leading order (NNLO) theory
predictions are available [2], while for e+e−→ 3 jets, full
NNLO predictions do not exist yet.
A future International Linear Collider will allow for

precision measurements at the per-mille level, which offer
the possibility of a determination of αs with unprecedented
precision. However, this will only be possible if the theoret-
ical error can keep up with such a precision. As the present
error on the NLO prediction for e+e−→ 3 jets is domi-
nated by scale uncertainties [3–6], the calculation of the
NNLO corrections to this process will surely lead to an im-
portant gain in precision.
After the virtual two-loop corrections entering this

calculation have become available [7–9], the bottleneck
now is given by the real radiation part where up to two
partons can become theoretically unresolved (soft and/or
collinear), leading to infrared singularities upon phase
space integration. These singularities have to be sub-
tracted and cancelled with the ones from the virtual contri-
butions before a Monte Carlo program can be constructed.
At NNLO, the infrared singularities can be entangled in
a complicated way, which renders the extraction of the
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poles a formidable task. Two different approaches can be
followed to achieve this task:

1. Construction of a subtraction scheme where the sub-
traction terms are integrated analytically inD = 4−2ε
dimensions over the unresolved phase space, thus ex-
tracting the poles in 1/ε. The main advantages of this
approach are the following: It allows for maximal (i.e.
analytical) control over the pole terms, and it ensures
a minimal number of subtraction terms, as the latter
are constructed manually by considering all physical
situations where a singular configuration is approached.
The drawbacks of this method are given by the fact
that constructing such a scheme is a highly non-trivial
and tedious task, especially in view of the fact that it
is different for each colour structure. Further, the an-
alytic integration over subtraction terms may become
impossible when applying the method to other pro-
cesses where several mass scales are involved.

2. Sector decomposition, where the poles are isolated by
an automated routine and the pole coefficients are in-
tegrated numerically. The advantages of this approach
reside in the fact that the extraction of the infrared
poles is algorithmic, being the same for all colour fac-
tors, and that the subtraction terms can be arbitrarily
complicated as they are integrated only numerically.
On the other hand, the algorithm which isolates the
poles increases the number of original functions and in
general does not lead to the minimal number of subtrac-
tion terms, thus producing rather large expressions.

Approach 1. has been pursued by several groups in dif-
ferent variations [10–23], and the implementation of the
method based on antenna subtraction [19,23] into a Monte
Carlo program is presently under way [24]. The sector
decomposition approach has seen a very rapid develop-
ment recently. Sector decomposition is a general method to
disentangle overlapping singularities in parameter space,
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originally used by Hepp [25] for overlapping ultraviolet
singularities. It has been very successfully applied to var-
ious types of multi-loop integrals since [26–32]. Its appli-
cation to NNLO phase space integrals has first been pro-
posed in [33]. Subsequently, it has been applied to the
calculation of inclusive phase space integrals for e+e−→ 2
jets at NNLO [15, 34–36]. The combination of the sector
decomposition approach with a measurement function in
order to obtain differential results first has been presented
in [36] and already lead to a number of very important
results [32,37–39].
The present paper deals with the application of sector

decomposition to the double real radiation part of the pro-
cess e+e−→ 3 jets at NNLO, which involves subprocesses
of the type γ∗→ 5 partons. The matrix elements for the
processes γ∗→ qq̄ggg and γ∗→ qq̄q′q̄′g are huge, such that
the calculation also involves non-trivial book-keeping and
file-handling tasks, which are not addressed in this article.
The intention of this paper is to show that a method has
been developed which can deal with 1→ 5 parton processes
efficiently, such that the construction of a fully differen-
tial Monte Carlo program for the process e+e−→ 3 jets at
NNLO is merely a matter of putting pieces together, al-
though a very complex one. Note that the double virtual
integrals do not need to be calculated by sector decompos-
ition; they also can be taken from the literature [7], and
their subsequent integration over the 1→ 3 phase space is
trivial. The mixed real–virtual contributions contain only
one-loop integrals, which can be treated as described for
example in [32, 35]. Therefore, we only consider one sam-
ple topology (including the full tensor structure) as part of
the full matrix element. For this topology, we first calcu-
late the fully inclusive integral over the five-parton phase
space, leading to poles up to 1/ε4. In order to prove the cor-
rectness of the result, we also calculate all possible cuts of
this diagram with less than five particles in the final state.
For the contribution from γ∗→ 4 partons, we use the result
obtained in [34] by sector decomposition. The KLN theo-
rem [40, 41] guarantees that the sum of all possible cuts
of the UV renormalised diagram is finite. This is demon-
strated in Sect. 2. However, the method is not limited to
the calculation of only inclusive cross sections. As the sin-
gularities are disentangled by an algebraic algorithm, the
inclusion of an arbitrary (infrared safe) measurement func-
tion – at the stage of the numerical evaluation of the finite
functions produced by sector decomposition – does not
present a problem. This is shown in Sect. 3. As an illustra-
tion of the action of the measurement function, the O(α3s )
three-, four- and five-jet rates are shown for the sample ma-
trix element as a function of the cut parameter ycut within

Fig. 2. Cancellation of IR divergences in the sum over all cuts of the renormalised graph

the JADE algorithm [42]. Section 4 contains the conclu-
sions. Details of the calculation are given in Appendix A.

2 Cancellation of divergences

As explained above, the method presented here addresses
the main difficulty in calculating the real radiation part of
e+e−→ 3 jets at NNLO, which is the isolation and subtrac-
tion of the infrared poles which occur when integrating the
squared amplitude over the phase space for γ∗→ 5 partons.
In order to check the correctness of the results for the

integrals over the 1→ 5 particle phase space, one can ex-
ploit the fact that the sum over all cuts of a given (UV
renormalised) topology must be infrared finite. In order to
demonstrate these cancellations, let us consider as an ex-
ample the diagram depicted in Fig. 1, occurring in the part
∼C3F of the squared amplitude for e

+e−→ 3 jets atNNLO.
Summing over all cuts of this diagram and performing

UV renormalisation, we obtain the condition

T1→5+ z1 T1→4+ z2 T1→3+ z3 T1→2 = finite , (1)

where T1→i denotes the diagram with i cut lines as shown
in Fig. 2.

2.1 UV renormalisation

For i= 1, 2, the renormalisation constants zi (in Feynman
gauge) already have been calculated in [34], to be found to
be given by

z1 = CF
αs

4π

1

ε
, (2)

z2 = C
2
F

(αs
4π

)2 (
1

2ε2
−
1

4ε

)
. (3)

The three-loop renormalisation constant z3 will be derived
in the following. Using the graphical BHPZ notation as

Fig. 1. The ladder diagram
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Fig. 3. UV renormalisation of the quark propagator at O(α3s )

in [34], three-loop renormalisation of the fermion selfen-
ergy implies that the combination of graphs as shown in
Fig. 3 is finite.
The explicit calculation yields

I3 = i � pC
3
F

(αs
4π

)3 (
−p2

µ2

)−3ε
4(1− ε)3

×Γ 3(1+ ε)G(1, 1, 0)G(1+2ε, 1, 1)

×{G(ε, 1, 0)+G(1+ ε, 1, 0)−G(1+ ε, 1, 1)} , (4)

G(α, β, n) =
Γ (α+β−D/2)

Γ (α)Γ (β)

Γ (D/2−α+n)Γ (D/2−β)

Γ (D−α−β+n)
,

D = 4−2ε,

Is13 = i � pC
3
F

(αs
4π

)3 (
−p2

µ2

)−2ε
(1− ε)2Γ 3(1− ε)Γ (1+2ε)

ε3Γ 2(1+ ε)Γ (3−3ε)
,

(5)

I
s2
3 = i � pC

3
F

(αs
4π

)3 (
−p2

µ2

)−ε
(1− ε)Γ 2(1− ε)

ε3Γ (2−2ε)

×

{
1

2
+
5

4
ε− ε log (−p2/µ2)

}
, (6)

I
s2s1
3 = i � pC3F

(αs
4π

)3 (
−p2

µ2

)−ε
(1− ε)Γ 2(1− ε)

ε3Γ (2−2ε)

×
{
1+ ε− ε log (−p2/µ2)

}
. (7)

The overall divergences J
si
3 = overall div [I

si
3 ] of the dia-

grams above are thus given by

J3 = i � pC
3
F

(αs
4π

)3 {
1

6ε3
+
3

4ε2
−
1

2ε2
log (−p2/µ2)

+
1

ε

[
79

24
−
π2

2
−
9

4
log (−p2/µ2)+

3

4
log2 (−p2/µ2)

]}
,

(8)

J
s1
3 = i � pC

3
F

(αs
4π

)3 {
1

2ε3
+
5

4ε2
−
1

ε2
log (−p2/µ2)

+
1

ε

[
31

8
−
π2

6
−
5

2
log (−p2/µ2)+ log2 (−p2/µ2)

]}
,

(9)

J
s2
3 = i � pC

3
F

(αs
4π

)3 {
1

2ε3
+
7

4ε2
−
3

2ε2
log (−p2/µ2)

+
1

ε

[
9

4
−
π2

12
−
3

2
log (−p2/µ2)+

5

4
log2 (−p2/µ2)

]}
,

(10)

J
s2s1
3 = i � pC3F

(αs
4π

)3 {
1

ε3
+
2

ε2
−
2

ε2
log (−p2/µ2)

+
1

ε

[
3−
π2

6
−3 log (−p2/µ2)+

3

2
log2 (−p2/µ2)

]}
.

(11)

Note that we have adopted the MS prescription

α= CMS α
0, αs = CMS α

0
s , CMS = Γ (1+ ε)

(
4π

µ2

)ε
.

From (8) to (11) we can now derive z3:

i � p z3 = J3−J
s1
3 − (J

s2
3 −J

s2s1
3 )

⇒ z3 = C
3
F

(αs
4π

)3 (
1

6ε3
−
1

4ε2
+
1

6ε

)
. (12)

The non-local logarithmic terms cancel, as guaranteed by
the BHPZ theorem [25,43,44].

2.2 Combining the renormalised diagrams

In order to verify (1), we have to integrate the ladder dia-
grams corresponding to the process γ∗→ i partons over the
1→ i particle phase space. Up to i= 4, this has been done
already in [34], where T1→4 has been calculated by sec-
tor decomposition. The important new ingredient here is
the calculation of T1→5. Before showing this calculation in
more detail, let us first construct the expressions entering
(1) for i < 5. From [34], we have

T1→2 = 2α q
2

(
q2

µ2

)−ε
(1− ε)Γ (1− ε)

Γ (1+ ε)Γ (2−2ε)
, (13)

T1→3 =−z1 T1→2

(
q2

µ2

)−ε
2 (1− ε)2Γ (1− ε)2

Γ (1+ ε)Γ (3−3ε)
, (14)
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T1→4 = (ε z1)
2 T1→2

(
q2

µ2

)−2ε
1

Γ (1+ ε)2Γ (1−2ε)

×

{
1

2ε2
+
11

4ε
+7.869

}
. (15)

Combination of these results with the renormalisation con-
stants given in Sect. 2.1 leads to

z1 T1→4+ z2 T1→3+ z3 T1→2 (16)

= C3F

(αs
4π

)3
T1→2

{
1

6ε3
+
1

2ε2

[
3− log

(
q2

µ2

)]

+
1

ε

[
5.608−

9

2
log

(
q2

µ2

)
+
3

4
log2

(
q2

µ2

)]
+ finite

}
.

What remains to be shown now is that the five-parton con-
tribution T1→5 exactly cancels the poles in (16).

2.3 Calculation of the five-particle contribution

The graph T1→5 is calculated numerically by sector decom-
position. To this aim, the phase space integrals are brought
to a form where all integrations are from zero to one, as
described in more detail in Appendix A. Note that the
parametrisation given here is particularly convenient for
the denominator structure of our sample topology. In order
to deal with the full matrix element, several parametri-
sations have been worked out, each one optimised to be
applied to a certain class of denominators. An automated
subroutine scans the denominators of a given matrix elem-
ent and applies the appropriate parametrisation. In this
way, the full expression naturally is split into tractable
subparts.
After having performed the transformations of the

phase space integration variables as explained in Appendix
Sect. A.1, the 1→ 5 phase space in D dimensions is given
by (A.7):

∫
dΦD1→5 =K

(5)
Γ (q

2)2D−5
∫ 1

0

10∏
i=2

dti [t5(1− t5)]
−1−ε

× [t8(1− t8)t10(1− t10)]
− 12−ε

× [t2 t6(1− t6)(1− t7)]
1−2ε

× [(1− t2)t3(1− t3)t4(1− t4)t9(1− t9)]
−ε
t2−3ε7 ,
(17)

K(5)Γ =
2π4ε

(4π)9Γ (−2ε)Γ (2−2ε)
.

Singularities only occur at the boundaries ti = 0, 1. Fur-
ther, one can split the integrations at ti = 1/2 and remap
the variables to the unit cube to assure that all potential
singularities occur only for ti→ 0. However, as this proced-
ure doubles the number of integrals for each ti, it is only
done for those variables where a singularity at ti = 1 is pos-
sible at all, in order to avoid a proliferation of terms.

The matrix element typically contains terms of the
structure

I =

∫ 1

0

dx

∫ 1

0

dy x−1−ε (x+y)−1 ,

where a naive subtraction of the singularity for x→ 0 of the
form

∫ 1

0

dx

∫ 1

0

dy x−1−εf(x, y)

=−
1

ε

∫ 1

0

dy f(0, y)+

∫ 1

0

dx

∫ 1

0

dy x−ε
f(x, y)−f(0, y)

x

fails, because the singularities for x→ 0 and y→ 0 are
overlapping. This is where sector decomposition shows its
virtues. The working mechanism of sector decomposition
already has been explained in detail in [27] and therefore
will be outlined only briefly here. The basic idea is to first
split the integration region into sectors where the variables
x and y are ordered:

I =

∫ 1

0

dx

∫ 1

0

dy x−1−ε (x+y)−1 [Θ(x−y)︸ ︷︷ ︸
(1)

+Θ(y−x)︸ ︷︷ ︸
(2)

] .

Then remapping the integration domain to the unit cube,
the singularities in our simple example are already disen-
tangled. After the substitutions y = x t in sector (1) and
x= y t in sector (2), one has

I =

∫ 1

0

dxx−1−ε
∫ 1

0

dt (1+ t)−1

+

∫ 1

0

dy y−1−ε
∫ 1

0

dt t−1−ε (1+ t)−1 .

For more complicated functions, several iterations of this
procedure may be necessary, but it is easily implemented
into an automated subroutine. Once all singularities are
factored out, the result can be expanded in ε, where the
subtraction of the pole terms naturally leads to plus distri-
butions by the identity

x−1+κε =
1

κ ε
δ(x)+

∞∑
n=0

(κε)n

n!

[
lnn(x)

x

]

+

where

∫ 1

0

dx f(x) [g(x)/x]+ =

∫ 1

0

dx
f(x)−f(0)

x
g(x) .

In this way, a Laurent series in ε is obtained, where the pole
coefficients are sums of finite parameter integrals which
can be evaluated numerically.
Note that the numerator structure of the matrix elem-

ent can only improve the infrared pole structure, such that
it can be included later, at the stage of the expansion in
ε. It also should be mentioned that for some phase space



G. Heinrich: Towards e+e−→ 3 jets at NNLO by sector decomposition 29

parametrisations, required to tackle the full matrix elem-
ent, square-root terms in the denominator are unavoid-
able. Such terms can spoil the simple scaling behaviour
which is crucial for the algorithm to work. However, one
can always find variable transformations such that these
terms can be mapped to a form which is amenable to sec-
tor decomposition. Typically, such transformations will be
non-linear [36].
Applying the method to our sample diagram, and re-

quiring a numerical precision of 1%, the following result
is obtained after an integration time of about 20min on
a 2.8GHz Pentium IV PC:

T1→5 =−C
3
F

(αs
4π

)3
T1→2

×

{
0.16662

ε3
+
1

ε2

[
1.4993−0.4999 log

(
q2

µ2

)]

+
1

ε

[
5.5959−4.4978 log

(
q2

µ2

)
+0.74978 log2

(
q2

µ2

)]

+ finite

}
. (18)

Combining (16) and (18) we see that all poles cancel within
the numerical precision.

3 Inclusion of a measurement function

The isolation of infrared poles by sector decomposition
is an algebraic procedure, leading to a set of finite func-
tions for each pole coefficient as well as for the finite
part. The finite part can be written to a Monte Carlo
program and combined with any infrared safe measure-
ment function [36–38]. To this aim, one has to take the
limit D→ 4 of the D-dimensional phase space. For the
1→ 5 phase space considered here, this is non-trivial, be-
cause in D = 4 the Gram determinant of five light-like
momenta vanishes, which means that only eight Mandel-
stam invariants are independent, whereas in D = 4− 2ε
one has nine independent invariants, i.e. nine independent
phase space integration variables, and sector decompos-
ition acts in D = 4−2ε dimensions. How this problem is
solved is explained in Appendix A.2. It is also described
there how the four-momenta of the particles in the final
state in terms of energies and angles are reconstructed
from the phase space integration variables ti, respectively
from the Mandelstam invariants. Note that this recon-
struction of the energies and angles from the Mandelstam
variables is valid for any parametrisation, not only for
the one given here. In this way, fully differential informa-
tion about the final state is available. This means that
the method allows one not only to calculate distributions
for certain observables, but also to build a partonic event
generator.
Note that the variables ti are transformed in the course

of sector decomposition, such that for each function which
is an endpoint of the sector decomposition tree, the expres-
sions for the invariants sij in terms of the final Monte Carlo

integration variables look different. This requires careful
(automated) book keeping, but does not constitute a prin-
cipal problem.
Further, it has to be assured that the subtraction terms

only come to action in phase space regions which are
allowed by the measurement function. To illustrate this
point, consider the simple one-dimensional example where
the measurement function is just a step function Θ(x−
a), a > 0, and the “matrix element” after sector decompos-
ition is given by a plus distribution [f(x)/x]+. If we naively
combine the plus distribution with our measurement func-
tion, we obtain

∫ 1

0

dx
f(x)−f(0)

x
Θ(x−a) = f(0) ln a+

∫ 1

a

dx
f(x)

x
.

(19)

On the other hand, the f(0) term stems from the subtrac-
tion of a singularity at x = 0, which is now killed by our
measurement function anyway, such that inclusion of the
f(0) term would lead to a wrong result. Therefore, the cor-
rect way to include the measurement function is of course

∫ 1

0

dx
f(x)Θ(x−a)−f(0)Θ(−a)

x
. (20)

However, this does not mean that the ε-expansions and
subtractions have to be redone each time the measurement
function is changed. It can be achieved by including sym-
bolic functions in the ε-expansion which, depending on the
generated phase space point in the Monte Carlo program,
take on the appropriate values.
As an example, the JADE algorithm [42] to define

three-, four- and five-jet events has been implemented into
a Monte Carlo program built upon the output of sec-
tor decomposition, using the multi-dimensional integra-
tion package BASES [45]. For the plots in Fig. 4a and b,
the diagram discussed in this paper (summed over all cuts)
served as a toy matrix element, but it should be empha-
sised that the same Monte Carlo program can be used to
calculate the full process e+e−→ 3, 4, 5 jets at order α3s ,
once the contributions from the other topologies are im-
plemented. As mentioned already, the architecture of the
program is such that the JADE algorithm can be easily re-
placed by a different jet algorithm, and shape observables
can also be defined.
Figure 4a and b show the three-, four- and five-jet rates

at order α3s , as a function of the jet separation parameter
ycut. In Fig. 4a, the y-axis is in arbitrary units, whereas in
Fig. 4b the rates are normalised to the sum of the three-,
four- and five-jet rates. The renormalisation scale µ2 has
been set equal to q2, the center of mass energy of the e+e−

system. As in the previous section, the numerical precision
is 1%. Figure 4a shows that the five-jet rate drops drasti-
cally as ycut increases, as to be expected. The three-jet rate
decreases only slowly, as only few events are classified as
two-jet events and thus rejected for values of ycut ≤ 0.08.
Figure 4b demonstrates how the three-jet rate decreases in
favour of the four- and five-jet rates if ycut becomes very
small.
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Fig. 4. Three-, four- and five-jet rates at order α3s for the sample matrix element

4 Conclusions and outlook

In this paper, a method based on sector decomposition
to calculate the double real radiation part of the process
e+e−→ 3 jets at O(α3s ) has been presented. The sector
decomposition algorithm serves to isolate, by an auto-
mated algebraic subroutine, the infrared poles which occur
upon phase space integration if one or several particles in
the final state become soft and/or collinear. In this way,
one is dispensed from the manual construction of a sub-
traction scheme. The cancellation of the poles is shown by
numerical calculation of the pole coefficients.
For the process e+e−→ 3 jets at NNLO, integration

over a phase space with up to five particles in the final state
is necessary, where up to two particles can become soft and
collinear. It has been proven that the program handles the
isolation and subtraction of the poles correctly by consider-
ing all possible cuts of a specific diagramwhich is a subpart
of the colour structure ∼ C3F contained in the full matrix
element at order α3s . Summing over all the cuts, the poles
cancel within the numerical precision.
The finite part has been implemented into a Monte

Carlo program which allows for the inclusion of a meas-
urement function in order to obtain differential distribu-
tions for arbitrary (infrared safe) observables. It should
be emphasized that the method presented here allows one
to retain the full information about the four-momenta
of the final state particles and thus can serve as a par-
tonic event generator. As an example, the three-, four-
and five-jet rates at order α3s as a function of the jet sep-
aration parameter ycut are shown for the subpart of the
full matrix element treated in this paper. As this toy ma-
trix element already shows most of the problems which
occur in the double real radiation part, while the one-
loop virtual corrections combined with the 1→ 4 phase
space, as well as the two-loop virtual part combined with

the 1→ 3 phase space, are relatively easy (because the
virtual integrals only lead to renormalisation factors), it
is an ideal testing ground for the method presented here
to tackle massless 1→ 5 processes. For the calculation
of the full matrix element, the expressions to be inte-
grated numerically in the double real radiation part will
of course be much larger, but the method described in
this paper can handle them in a similar way. The vir-
tual corrections will also be more complicated, but can
be treated with sector decomposition applied to loop in-
tegrals [27], for the kinematics of e+e− annihilation. The
two-loop integrals could also be taken from the litera-
ture [7]; this might be the more efficient option in what
concerns CPU time. The one-loop integrals combined with
single unresolved real radiation can be treated as described
in [32, 35]. Therefore the problem is basically reduced
to large file handling, book keeping and implementation
time/CPU time.
For the parts of the full matrix element considered so

far, the numerical stability is very good. A reason might
be that the subtractions within the sector decomposition
method are local in the sense of plus distributions, i.e.
the singular limits in each integration variable are directly
subtracted. However, as the considered example does not
have the most complicated denominator structure that can
occur, it would be premature to make a definite statement
about the numerical stability of the final Monte Carlo pro-
gram for the full process.
CPU time will become an issue for the treatment of

the full process, but as the method relies on a division of
the amplitude squared into different “topologies” corres-
ponding to different classes of denominator structures, the
problem is naturally split into smaller subparts. If such a
“trivial parallelisation” is not sufficient, there is still the
possibility to parallelise the evaluation of the functions
produced by sector decomposition.
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As the method is based on a universal algorithm acting
on integration variables and does not require analytic inte-
gration over complicated functions, it will surely see a num-
ber of interesting applications in the future, in particular in
what concerns the production of massive particles.
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Appendix: Massless five-parton phase space

A.1 Phase space 1→ 5 in D �= 4 dimensions

The phase space for the decay of one off-shell particle
with momentum q intoN massless particles with momenta
p1, . . . , pN inD dimensions is given by

∫
dΦD1→N = (2π)

N−D(N−1)

∫ N∏
j=1

dDpj δ
+(p2j )δ

(
q−

N∑
i=1

pi

)

= (2π)N−D(N−1) 21−N

×

∫ N−1∏
j=1

dD−1pj
Θ(Ej)

Ej
δ+

⎛
⎝

[
q−

N−1∑
i=1

pi

]2⎞
⎠ .

(A.1)

For N = 5, we parametrise the momenta in D dimensions
as (ordering of the vector components (E, (D−4), x, y, z))

q =
(
q, 0(D−1)

)
,

p1 =E1
(
1, 0(D−2), 1

)
,

p2 =E2
(
1, 0(D−3), sin θ1, cos θ1

)
,

p3 =E3
(
1, 0(D−4), sin θ2 sin θ4, sin θ2 cos θ4, cos θ2

)
,

p4 =E4
(
1, (0(D−5), sin θ6 sin θ5 sin θ3), cos θ6 sin θ5 sin θ3,

cos θ5 sin θ3, cos θ3
)
,

p5 = q−p1−p2−p3−p4. (A.2)

Inserting this parametrisation into (A.1) and carrying out
integrations over the azimuthal angles leads to

∫
dΦD1→5

= (2π)5−4D2−4V (D−1)V (D−2)V (D−3)V (D−4)

×

∫ 4∏
j=1

dEj Θ(Ej) dθ1 . . .dθ6

× [E1E2E3E4 sin θ1 sin θ2 sin θ3]
D−3

× [sin θ4 sin θ5]
D−4
(sin θ6)

D−5 δ+

⎛
⎝

[
q−

4∑
i=1

pi

]2⎞
⎠ ,

(A.3)

where

V (D) = 2π
D
2 /Γ

(
D

2

)
.

Introducing the scaled invariants yi as new integration
variables,

y1 = s12/q
2, y2 = s13/q

2, y3 = s23/q
2, y4 = s14/q

2,

y5 = s24/q
2, y6 = s34/q

2, y7 = s15/q
2, y8 = s25/q

2,

y9 = s35/q
2, y10 = s45/q

2,

leads to the Jacobian

|detJ |= 210q4 [E1E2E3E4 sin θ1 sin θ2 sin θ3]
3

× [sin θ4 sin θ5]
2
sin θ6 .

The Jacobian can be expressed in terms of the determinant
of the Gram matrix Gij = 2pi ·pj :

detG=−25q2 [E1E2E3E4 sin θ1 sin θ2 sin θ3 sin θ4

× sin θ5 sin θ6]
2

⇒ |detJ |=
√
215q6 (− detG)

× [E1E2E3E4 sin θ1 sin θ2 sin θ3]
2 sin θ4 sin θ5 .

After these variable transformations, the phase space is
given by

∫
dΦD1→5

= (2π)5−4D2−2−2DV (D−1)V (D−2)V (D−3)

×V (D−4)(q2)2D−5

×

∫ 10∏
j=1

dyjδ

(
1−

10∑
i=1

yi

)
(−∆5)

D
2 −3Θ (−∆5) ,

(A.4)

where

−∆5 = y
2
10y1y2y3+y

2
9y1y4y5+y

2
8y2y4y6+y

2
7y3y5y6

+y26y1y7y8+y
2
5y2y7y9+y

2
4y3y8y9+y

2
3y4y7y10

+y22y5y8y10+y
2
1y6y9y10+y10 [y2y3y5y7+y1y3y6y7

+ y2y3y4y8+y1y2y6y8+y1y3y4y9+y1y2y5y9]

+y9 [y4y5 (y3y7+y2y8)+y1y6 (y5y7+y4y8)]

+y6y7y8 (y3y4+y2y5)

=−
1

2
detG/

(
q2

)5
. (A.5)

Note that V (D−4) = 2π−ε/Γ (−ε) =O(ε) is compensated
by a spurious pole from (−∆5)−1−ε.
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For the phase space integration over the full 1→ 5 ma-
trix element relevant for the calculation of e+e−→ 3 jets
at NNLO, we choose different parametrisations optimised
for certain types of denominators occurring in the matrix
element. In the following we only give the parametrisa-
tion which is relevant for the topology under considera-
tion in this article. In this parametrisation, we eliminate

y1 by δ(1−
10∑
i=1

yi) and substitute y6 and y7 in favour of

x6 = s134/q
2, t7 = s1345/q

2. After these substitutions, the
constraint Θ(−∆5) is solved for y5, leading to

y±5 = y
0
5±

√
R5 .

Then the condition R5 ≥ 0 is solved for y8 and the condi-
tion (y+8 −y

−
8 )≥ 0 is solved for y10. Making variable trans-

formations such that all integration limits over the new
variables ti are from zero to one, we finally obtain

s1345/q
2 = t7,

s134/q
2 = t6 t7,

s13/q
2 = t6 t7 (1− t2) ,

s23/q
2 = t3 (1− t7) (1− t2t4) (t6 (1− t9)+ t9) ,

s14/q
2 = t2 t4 t6 t7,

s24/q
2 = y−5 +

(
y+5 −y

−
5

)
t5,

s34/q
2 = t2 t6 t7 (1− t4) ,

s15/q
2 = t7 (1− t6) [1− t9 (1− t2t4)]−y10,

s25/q
2 = y−8 +

(
y+8 −y

−
8

)
t8,

s35/q
2 = t7 t9 (1− t6) (1− t2t4) ,

s45/q
2 = y−10+

(
y+10−y

−
10

)
t10, (A.6)

y±8 = y
0
8±d8/2,

y08 = (1− t6) (1− t7) {t9+ t3 [t6 (1− t9)− t9]}

/ (t6 (1− t9)+ t9) ,

d8 = y
+
8 −y

−
8

= 4 (1− t6) (1− t7)
√
(1− t3) t3 t6 (1− t9) t9

/ (t6 (1− t9)+ t9) ,

y±10 = y
0
10±d10/2,

y010 = t2 t7 (1− t6) {1− t9− t4 [1− t9 (2− t2) ]}

/ (1− t2 t4) ,

d10 = y
+
10−y

−
10

= 4 t7 t2 (1− t6)
√
(1− t2) (1− t4) t4 (1− t9) t9

/ (1− t2 t4) .

The solution of∆5 = 0, y
±
5 , is rather lengthy and therefore

will not be given explicitly.
In terms of the new variables, the phase space is given

by

∫
dΦD1→5 =K

(5)
Γ

(
q2

)2D−5 ∫ 1

0

10∏
j=2

dtj [t5(1− t5)]
−1−ε

× [t8 (1− t8) t10 (1− t10)]
− 12−ε

× [t2 t6 (1− t6) (1− t7)]
1−2ε

× [(1− t2)t3(1− t3)t4(1− t4)t9(1− t9)]
−ε
t2−3ε7 ,
(A.7)

K(5)Γ = (2π)
5−4D2−2−2D2−8εV (D−1)V (D−2)

×V (D−3)V (D−4)

=
π4ε

217π9Γ (−2ε)Γ (2−2ε)
.

A.2 Phase space 1→ 5 in D = 4 dimensions

In D = 4 dimensions, the Gram determinant ∆5 is zero
due to the fact that already four independent light-like mo-
menta pi ∈ {p1, . . . , p5} span Minkowski space. This leads
to a nonlinear constraint between the Mandelstam vari-
ables yi, as can be seen from (A.5). The momenta inD = 4
can be parametrised as in (A.2), but with θ6 = 0 (and no
(D−4)-dimensional component). The constraint Θ(−∆5)
in (A.4) becomes δ(−∆5), leading to y5 = y

±
5 instead of

y−5 +(y
+
5 −y

−
5 ) t5, that is, t5 takes only the values 0 or 1.

Therefore, a consistent way to obtain the four-dimensional
phase space from the D-dimensional one is to integrate
over t5 in (A.7) before any sector decomposition is per-
formed, cancelling the spurious pole coming from the t5
integration with V (D−4) contained in K(5)Γ . The matrix
element ME will always be of the form ME=A0+A1 y5+
A2 y

2
5 because in all cases where y5 is in the denominator

a different parametrisation will be chosen, such that the
same arguments hold for a different invariant yi with i �= 5.
Using the fact that in our case1 A2 = 0 and writing y5 as
y5 = y

+
5 t5+y

−
5 (1− t5) we obtain

∫
dΦD1→5ME

=R
(5)
Γ

(
q2

)2D−5 ∫ 1

0

10∏
j=2

dtj
{[
A0+y

+
5 A1

]
+

[
A0+y

−
5 A1

]}

× [t8 (1− t8) t10 (1− t10)]
− 12−ε [t2 t6 (1− t6) (1− t7)]

1−2ε

× [(1− t2) t3 (1− t3) t4 (1− t4) t9 (1− t9)]
−ε
t2−3ε7 ,

(A.8)

R
(5)
Γ =K

(5)
Γ

Γ (−ε)Γ (1− ε)

Γ (1−2ε)

(2π)4ε

(4π)8Γ 2 (1/2− ε)Γ (2−2ε)
.

(A.9)

The new prefactor R
(5)
Γ is finite in the limit ε→ 0. The

matrix element only depends on the eight independent

1 The generalisation to the case A2 �= 0 is trivial, leading only
to additional Γ functions.
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variables t2, . . . , t4, t6, . . . , t10 now, and sector decompos-
ition in those variables will isolate the “physical” infrared
poles. Therefore we can still use the parametrisation (A.6)
in D = 4, the only difference being that s24/q

2 is given by
y+5 , respectively y

−
5 .

In order to construct a Monte Carlo program of (par-
tonic) event generator type, it is useful to express the four-
momenta again in terms of angles and energies. The corres-
ponding expressions in terms ofMandelstam variables are

E1 =
q2− s2345
2q

, E2 =
q2− s1345
2q

,

E3 =
q2− s1245
2q

, E4 =
q2− s1235
2q

,

cos θ1 =−1+2 (s1345s2345− s345)/(1− s1345)/(1− s2345) ,

cos θ2 =−1+2 (s1245s2345− s245)/(1− s1245)/(1− s2345) ,

cos θ3 =−1+2 (s1235s2345− s235)/(1− s1235)/(1− s2345) .

The expression for cos θ4 and cos θ5 are more complicated
and will not be given explicitly.
Taking the limit ε→ 0 in (A.8), the phase space integral

over a matrix element ME in the above parametrisation is
given by

∫
dΦD=41→5 ME=

(
q2

)3
48π9

×

∫ 10∏
j=2,j �=5

dtj

{
ME

∣∣∣
t5=0
+ME

∣∣∣
t5=1

}

× [t8 (1− t8) t10 (1− t10)]
−12 t2 t6 t

2
7

× (1− t6) (1− t7) . (A.10)
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